
 

Business Chat
API Integration Tutorial

April 2020.1

Overview 5

Integrating with Business Chat 6

Setting Up Your Accounts on Apple Business Register 7 ...

Configuring Your MSP Test Server 7 ...

Tools 8 ...

Receiving and Sending Messages 10

Exercise: Listening for Incoming Messages 10 ...

Exercise: Receiving a Text Message 11 ...

Exercise: Validating a Received Message 12 ...

Exercise: Sending a Text Message 13 ...

Exercise: Sending an Image Attachment 14 ..

Exercise: Downloading Attachments 16 ..

Sending List and Time Pickers 18

Exercise: Sending a Text-only List Picker 18 ...

Exercise: Sending a List Picker with an Image 19 ..

Exercise: Sending a List Picker with Multiple Images 19 ...

Exercise: Sending a List Picker Using an Interactive Data Reference (IDR) 20 ...

Exercise: Sending a Time Picker 21 ...

Advanced Interactive Messaging 23

Exercise: Retrieving a Large Message Using an Interactive Data Reference 23 ...

Apple Pay in Business Chat 25

Exercise: Send an Apple Pay Request—Basic Functionality 25 ..

Authentication in Business Chat 33

Exercise: Sending an Authentication Request 33 ...

Exercise: Receive and Parse an Authentication Response 36 ..

Exercise: Decode the Auth Token and Retrieve User Data 38 ..

Contents

Connecting with Your Clients 39

Exercise: Create a Client Landing Page 39 ...

Exercise: Publish Your Client Landing Page 41 ...

iMessage Extensions 42

Exercise: Using Custom iMessage Extensions 42 ..

Frequently Asked Questions 44

Most Common Error 44 ...

User Accounts and Sync of Messages Across Devices 44 ...

Routing with Intent and Group IDs 45 ...

Compliance and Regulatory Questions 46 ...

Glossary 47

Business Chat API Integration Tutorial April 2020.1 3

Revision History
Version Changes Release Date

2020.1 Numerous clarifications of the human readable text based on feedback
from technical inquiries and our issue tracking system.

April 2020

2019.6 Code was removed from tutorial. The code was rewritten in Python 3 and
is in an attached zip file.

September 2019

2019.5 In Apple Pay exercises, language has been changed from
postalAddress to post to correctly reflect the API.

June 2019

2019.4 Fixed broken links and other minor corrections. May 2019

2019.3 Fixed broken links. May 2019

2019.2 Minor code corrections. April 2019

2019.1 Added Passing Authenticate Data exercise; updated Apple Pay
exercises; removed Single Sign On; Incorporated FAQs and
troubleshooting information into main document; minor content updates.

April 2019

2018.4 Incorporated corrections to the Apple Pay exercise; added Integrating the
Sign Up Page and Sending Rich Links exercises.

September 2018

2018.3 Minor corrections to code examples. Updated troubleshooting section. August 2018

2018.2 Added Created a Landing Page section and made minor content
updates.

August 2018

Business Chat API Integration Tutorial April 2020.1 4

OVERVIEW

Overview
Welcome to the Messaging Service Provider (MSP) API Integration Tutorial! At this point
of the MSP onboarding process, you may either need to determine if your platform can
support Business Chat functionality or you need to prepare your platform for a demo to
the Apple Business Chat (ABC) team. Either way, the exercises in this tutorial can help
you get your messaging platform ready by showing you how the functionality works.

For your demo, start with a brief overview of your messaging platform and its
capabilities, provide the ABC team with a console view and, at the same time, an iOS
device screen, so the ABC team can see both sides of the conversation. The ABC team
also needs to see how you trigger objects, such as list pickers, time pickers, and the
basic Apple Pay functionality.

You need to demonstrate that your messaging platform can perform each of the
following fundamental business functionalities to qualify as a MSP.

✓ Feature Reference

Bi-directional messaging with text, images, and files Receiving and Sending
Messages

List picker messaging, text-only and images Sending List and Time Pickers

Time picker messaging Exercise: Sending a Time
Picker

Basic Apple Pay functionality Apple Pay in Business Chat

OAuth flow support Authentication in Business
Chat

Custom iMessage app iMessage Extensions

Rich link messaging Sending Rich Link Messages

Agent/bot/user typing indicators Typing Indicator Message

"Close conversation” handling Receiving Closed
Conversation Messages

Connect Landing Page Connecting with Your Clients

Group and intent ID-based routing

• Starting a Chat from your
App

• Adding a Business Chat
Button to Your Website

• Starting a Chat from a URL

Business Chat API Integration Tutorial April 2020.1 5

https://developer.apple.com/documentation/businesschatapi/messages_sent/sending_rich_link_messages
https://developer.apple.com/documentation/businesschatapi/typingindicatormessage
https://developer.apple.com/documentation/businesschatapi/messages_received/receiving_closed_conversation_messages
https://developer.apple.com/documentation/businesschat/starting_a_chat_from_your_app
https://developer.apple.com/documentation/businesschat/adding_a_business_chat_button_to_your_website
https://developer.apple.com/documentation/businesschat/starting_a_chat_from_a_url

INTEGRATING WITH BUSINESS CHAT

Integrating with Business Chat
This is a step-by-step tutorial, designed to help you integrate your Customer Service Platform (MSP) with
the Business Chat API. The Business Chat Team structured the tutorial so you could follow the API in the
documentation on Apple Developer.

NOTE For the purposes of this tutorial, configurations and implementations of all Business Chat features
will occur on your test server.

Although the provided code examples are in the Python programming language and HTTP protocol is the
fundamental architecture, you can adapt the code for use in any language.

The Business Chat Sandbox is a platform that allows customers to send and receive messages using
Business Chat. The Sandbox is a server with a MSP and the Business Chat Service, you do not need to

connect your platform to it for it to work.

This tutorial relies on a server provided by you and configured as a Customer Service Platform provider.
This is a test server, not a production server. Your MSP test server needs to access to the web so it can talk
to the Business Chat Service.

You will learn the following in this tutorial:

• Experiment with different message types, from basic text messaging to sending Apple Pay payments.

• Explore using different message types, such as text and interactive, and the handling of small to large
attachments.

By the end of this tutorial, you should be familiar with the concepts and features Business Chat offers to
businesses, including familiarity with implementing these features on your MSP.

All tutorials use the following diagram when sending and receiving data. A customer’s device sends a

message to the Business Chat service which then posts the customer’s message to the MSP endpoint. The
MSP digests the message, forwarding it to the appropriate business agent for a response. The Business
Agent responds sending the message back to the MSP who then posts it to the Business Chat Service and
from there it is forwarded back to the Customer’s Device.

Business Chat API Integration Tutorial April 2020.1 6

INTEGRATING WITH BUSINESS CHAT

Setting Up Your Accounts on Apple Business Register
Your MSP, Business Chat accounts, brands, team members, and organization details must all be entered
into Apple Business Register (ABR) to create the accounts needed for this tutorial. The link for ABR is at:

https://register.apple.com/

ABR is designed as a self-service portal. It is mostly self-explanatory with a few key items of note:

• You will have to apply for, and be approved for, your company to be able to offer MSP service. If you do

not see Customer Service Platform as an item in ABR, contact your Business Chat account manager to
determine the application process

• ABR will generate several key values that you will need: CSP ID, Business ID, and secret passphrase.

Other parameters, you will have to enter into ABR, such as organizational details, team member details,
brand colors, brand logos, and URLs to your server(s)

• Each Business ID is associated with one and only one CSP ID. Internal test Business IDs have no brand.
Commercial Business IDs must be associated with a brand in ABR, which will require an approval step by

the brand review team that may take several business days

Configuring Your MSP Test Server
When prompted, you can refer to the following information throughout the exercises in this tutorial:

• CSP ID*: a unique UUID received when your MSP account has been approved

• Business ID*: a unique UUID received when your Business Chat account has been approved

• Secret passphrase for API*: a Base64-encoded string

• MSP message endpoint: https://<your.endpoint.host>/message

* Information obtained from your Apple Business Register MSP account.

NOTE Messaging Service Provider (MSP) were previously referred to as Customer Service Provider
(CSP). The code samples refer to CSP ID which may be referred to MSP ID in other documents.

MSP endpoint SSL certificate requirements

Your SSL certificate must meet the HTTPS requirements needed to connect to the Business Chat
endpoints. Your SSL certificate should contain the following:

• Valid SSL certificate

• Issued name on the SSL certificate must match the hostname

• Certificate must include the entire trust chain, including CAs and root

• Certificate must be in Oracle Java 8+ framework’s default trust store, meaning signed by trusted CAs,
supported encryption, and format.

NOTE ngrok hosts, and all similar firewall-defeating technologies, are not allowed for use with Business
Chat. They will be declined or disabled for messaging, client landing page, or authentication endpoints.

Business Chat API Integration Tutorial April 2020.1 7

https://register.apple.com/
https://register.apple.com/business-chat

INTEGRATING WITH BUSINESS CHAT

Business Chat server endpoints

The endpoints allow messages to be routed between the Business Chat service and your platform. See
How to Setup Your Endpoint.

• Production: https://mspgw.push.apple.com/v1/message

• Staging: https://mspgw-int.push.apple.com/v1/message

The staging endpoint is for the development and testing of server changes. Even though you can
message the actual users through the staging endpoint, it has a load limit and is not intended for
production messages.

TIP Business Chat requires that the URL for your messaging requests end in /message.

Tools
This section includes the tools used throughout this tutorial.

Apple iOS devices

To test and verify the exercises from both your console and customer-side, you’ll need an Apple supported
device that can run iOS 11.3 or later.

TIP If your device continues to display Waiting for activation, use the following link to check your device
settings at https://support.apple.com/en-us/HT201422.

NOTE Business Chat is available from macOS devices with a limited feature set. Currently text messages,
attachments, authentication, and Apple Pay payments are available. Other message types will appear in
the Messages window, but display the following message when clicked:

Development tools

The following development tools are needed to complete the exercises in this tutorial:

• Python 3.7

• Python modules:

• Flask

Business Chat API Integration Tutorial April 2020.1 8

INTEGRATING WITH BUSINESS CHAT

• pyjwt

• pycrypto

• requests

• cryptography

How to Setup Your Endpoint

If your endpoint isn’t set up, you’ll need to set up a messaging server platform endpoint to send and receive
messages from the Business Chat service.

1. Select a server that has sufficient storage available for the application, as Apple does not save
messages after delivery.

2. Set up your server to receive HTTPS messages.

3. Configure a URL endpoint on your messaging server. Your server must be capable of receiving traffic on
/message.

4. Confirm that you can receive traffic to your URL on /message.

5. You must have a logging tool installed and activated so that you can triage issues from your server side.

Setup an HTTPS proxy

The Business Chat Server expects the MSP endpoint to listen for the registered platform’s API base-URL

supporting HTTPS. You can simplify local development by setting up a proxy on the platform’s API base-
URL server to point to a local HTTP port, such as 8002:

• https://your.endpoint.base.url points to http://localhost:8002

NOTE Exercises in this tutorial expect that you are redirecting messages to the Business Chat Server
at:

http://localhost:8002

You can send messages to localhost, but you cannot receive them.

Alternatively, you can set up SSL support for Flask (search the web for tutorials and resources).

from OpenSSL import SSL
context = SSL.Context(SSL.SSLv23_METHOD)
context.use_privatekey_file('your_server.key')
context.use_certificate_file('your_server.crt')

app.run(host='127.0.0.1',port='12344', debug = False/True,
ssl_context=context)

Business Chat API Integration Tutorial April 2020.1 9

http://localhost:8002

RECEIVING AND SENDING MESSAGES

Receiving and Sending Messages
When a customer sends a message to a business, the customer's device sends the message to the
Business Chat server. The Business Chat server forwards the message to the Messaging Service Provider

(MSP) by making a POST request to the /message endpoint. For more information on receiving messages,

see Messages Received.

In this section, you’ll learn how to listen, receive, and validate incoming messages.

TIP You can initiate a conversation in the Messages app by using the business token directly as a
recipient in Messages. The format is urn:biz:<your-business-id>.

When a business replies to a customer’s text message, the Messaging Service Platform (MSP) forwards the
reply to the Business Chat server. To forward the reply, the MSP prepares the message for delivery, and

sends a POST request to the /message endpoint hosted by Business Chat. For more information on

sending messages, see Messages Sent.

Exercise: Listening for Incoming Messages
In this exercise, you run a simple web service and listen to message requests. Send a text message from
the Messages app on a device to your business and observe the request of the text message.

TIP Listening for incoming messages is the only way to get the opaque ID. An opaque ID is an identifier
used for anonymous routing between the customer and the business.

On your server

1. Locate the zip folder and unzip it.

2. Locate and run the 00_listening.py file.

3. Listen to POST requests at: https://<yourCSPEndpoint>/message

Sending a message from your iOS device

Send a text message from the Messages app on an iOS device to your business.

TIP When a customer ends the conversation by deleting the message, a conversation type close
message is sent to your MSP. You cannot begin a new conversation with the customer.. Only the
customer can re-initiate the conversation. When they do, however, they will return with the same opaque
user ID as before.

1. From an iOS device, open Messages.

2. Put in your business URN identifier (urn:biz:<your registered business id>) as recipient. 
 

Business Chat API Integration Tutorial April 2020.1 10

https://developer.apple.com/documentation/businesschatapi/messages_received
https://developer.apple.com/documentation/businesschatapi/messages_sent

RECEIVING AND SENDING MESSAGES

 

3. Compose a simple text message, such as “Hello business!”, and tap send.

Expected MSP server response
By default, on your MSP Test Server you’ll receive at least two messages: one is for typing start, and the
other is for the actual message. The typing indicator in the output is automatically displayed on the console
and is not a part of the typing_start indicator. Observe the request of the text message.

Just received a message!
Just received a message!

Exercise: Receiving a Text Message
In this exercise, you receive, decode, and read an incoming text message.

TIP Once a message has been delivered, you cannot retrieve it.

Complete the following tasks:
1. Send a text message from the Messages app to your business.

2. Receive the message payload.

3. Uncompress, using GZIP, and print the payload.

On your server

1. Locate and run the 01_receiving_text_message.py file.

2. Once the file has completed running, save the source_id for use later in the tutorial.

Expected MSP server response
The type of information given is the opaque user ID and the device agent. The opaque user ID is the source
ID when receiving messages. The device agent tells you the type of device the customer is using, such as

iPhone OS, Mac OS X, Watch OS, and Unknown.

User is typing...
Just received a text message!
Message body: Nice to meet you
Source ID: <opaque user ID>
Device Agent: <device agent of user>

Business Chat API Integration Tutorial April 2020.1 11

RECEIVING AND SENDING MESSAGES

NOTE Write down the Source ID as displayed in the output above. You’ll use this as the
destination_ID in future exercises when sending messages.

TIP The opaque user ID used in this section if very important to the functionality of Business Chat. It
persists over long periods of time (years). It can be used across multiple devices by the user. It is unique
identifier used between one Business ID and one user. It is not shared between businesses, even on the
same MSP. If the user initiates a conversation with another Business ID, she will receive a new opaque
user ID for that conversation.

Exercise: Validating a Received Message
In this exercise, you verify the authorization header of a received message. For more information on
validating messages, see Validating a Message.

Complete the following tasks:
1. Extract the JSON Web Token (JWT) string from headers.

2. Verify the signature and audience by decoding the JWT string.

When receiving a message on your messaging platform, the JWT audience (aud) value in the JWT payload,

is your CSP ID. Do not use your Business ID to validate.

TIP HTTP header field names are case-insensitive, according to https://www.w3.org/Protocols/rfc2616/
rfc2616-sec4.html.

On your server

1. Locate and run the config.py file to completion.

2. Locate and run the verify_message.py file to completion.

Expected MSP server response
By default, you receive at least two messages: one is for typing start, and the other is for the actual
message. The typing indicator in the output is automatically displayed on the console and is not a part of
the typing_start indicator. Observe the request of the text message.

Authorization succeeded.
Authorization succeeded.

If you are not receiving any requests from Apple Business Chat server, check the following:
• Make sure your endpoint SSL certificate fulfills the requirements. See Configuring Your MSP Test Server.

• Make sure your server is listening to POST requests on https://<your.domain>/<path>/message

• Make sure you are using the iMessage service for outgoing messages. You can check the iMessage
setting by going to Settings > Messages.

Business Chat API Integration Tutorial April 2020.1 12

https://developer.apple.com/documentation/businesschatapi/messages_received/validating_a_message
https://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html

RECEIVING AND SENDING MESSAGES

• Make sure your messages actually got sent from the device. If you are seeing a progress bar that runs for
a long time, please check your internet connection and iMessage settings at 
https://support.apple.com/en-us/HT201422.

• Make sure there is no software blocking requests or closing the connection. Be aware that your service
may be blocking incoming requests due to strict rules. One common case is, in the “hostname” HTTP
header, the port number is included, even though it’s optional.

Exercise: Sending a Text Message
In this exercise, you send a text message payload.

Complete the following tasks:

1. Successfully derive the binary CSP secret from secret passphrase.
2. Create a valid JWT header using your CSP secret. See Authorizing Messages.

3. Get the destination_id from the response in Exercise: Receiving a Text Message to respond.

4. Copy and paste the destination_id into the Listing send_text_message.py code.

5. Assemble a message header and payload.

6. Send a message.

When sending a message from your messaging platform, the JWT issuer value (iss in the JWT payload)

should be the CSP ID. Using Business ID in this instance results in authorization failures.

TIP The timestamp unit, iat in the JWT payload, should be in seconds, not milliseconds.

The following JWT header creation code makes the authorization header field token.

On your server

1. Locate and run the jwt_util.py file to completion.

2. Locate and edit the 03_send_text_message.py file by inserting the destination_id, located towards
the bottom of the file, with the source_id from the output in Exercise: Receiving a Text Message.

3. Save and run the 03_send_text_message.py file.

Expected MSP server response
You should see the following message on your MSP server.
Business Chat server return code: 200

If you are unable to send a text message, then check the following:
• Go through the Business Chat documentation and the tutorial.

• Examine the response body for potential errors.

• If you get an error code, refer to the table below.

Business Chat API Integration Tutorial April 2020.1 13

https://developer.apple.com/documentation/businesschatapi/authorizing_messages

RECEIVING AND SENDING MESSAGES

Use the following matrix to troubleshoot any whitelisting problems you may encounter.

* Occurs only if the customer is logged out on all devices for a particular Apple ID. Otherwise, messages are delivered to devices still
logged in with the Apple ID.

Exercise: Sending an Image Attachment
A message can include one or more attachments. An attachment can be an image, PDF, or other file type,
and it must be smaller than 100 MB. For more information about attachments, see Sending Messages with
Attachments.

In this section’s exercises, you download different types of attachments. In this exercise, you send a
message with an image attachment.
1. Perform a pre-upload request to retrieve an attachment upload URL.

2. Encrypt the attachment data.

3. Upload the encrypted attachment data to the retrieved attachment upload URL.

4. Send the message with metadata of the attachment.

On your server

Locate and run the attachment_cipher.py file.

Error Troubleshooting Tips

401 “unauthorized” error • Make sure you are using your CSP ID to encode the JWT token, and your
Business ID in headers and payload.

• Make sure to Base64-decode the textual secret when generating your
JWT token.

• Ensure your JWT timestamp (iat value) is in seconds not in
milliseconds or another unit.

• Check you have the “Bearer” prefix in authorization header.

410 “session expired” error The customer you are attempting to message deleted the conversation
from the messages tray on their device.

Apple ID White-listed Closed Conv. Device to MSP MSP to Device

✓ ✓ Ok Ok

✓ Not delivered Not delivered

✓ Removed Ok 404 Resource Not Found

Logout* ✓ Ok 404 Resource Not Found

n/a No email sent

✓ Ok, reopens conversation. 410 Resource Gone

Business Chat API Integration Tutorial April 2020.1 14

https://developer.apple.com/documentation/businesschatapi/messages_sent/sending_messages_with_attachments
https://developer.apple.com/documentation/businesschatapi/messages_sent/sending_messages_with_attachments

RECEIVING AND SENDING MESSAGES

Send the message with Base64-encoded images
In this exercise, you send a message with Base64-encoded image attachments. In the message payload
body, you need an Unicode Object Replacement Character (\uFFFC) as a placeholder for each attachment

you send.

On your server

1. Locate and edit the 04_send_image_attachment.py file by inserting the destination_id, located
towards the bottom of the file, with the source_id from the output in Exercise: Receiving a Text
Message.

2. Save and run the 04_send_image_attachment.py file.

Expected MSP server response
You should see the following message appear on your MSP server.
Business Chat server return code: 200

Expected client device response
If the encrypted data does not display correctly in the Message client, check your encryption
implementation.

If attachments are not showing up in the Messages app, check the following:

• Make sure in the message body you have a Unicode Object Replacement Character (\uFFFc) for each

attachment you are sending

• Make sure you are using Base64-encoding for the attachment signature

• If the sent images are displayed as icons in the Messages app, then verify the following:

• Encrypt the attachment using the correct algorithm

• Do not compressed the data when sending

• Uploaded data is not corrupted

• Do not subsequently modify the data using network nodes

To verify that your encryption implementation is correct:

In your encryption method use the following encryption key rather than a randomly generated one:
12E9F08B6B0CCC36DF688BF167FAF7BF3E7E696D1A66E98C9E9949131C9F8E07 (hex-encoded).

1. Hex-decode the string.

2. Encrypt the string “12345” using the above listed encryption key.

3. The Base16-encoded result should be 7634125F65.

To verify that your decryption implementation is correct:

Encrypt then decrypt any given string. The result should be the same as the input.

Business Chat API Integration Tutorial April 2020.1 15

RECEIVING AND SENDING MESSAGES

Exercise: Downloading Attachments
In this exercise, you receive a message containing attachments. You need to download and decrypt the
attachments. See Downloading and Decrypting an Attachment.

TIP In general, the URL field in the attachments array should not be URI-encoded. You can include a mix
of unescaped and escaped characters if that is how the client device uses the link.

Complete the following tasks:
1. Receive a message payload with attachments.

2. For each attachment perform a /preDownload request to get the download URL.

3. Convert the provided hexadecimal signature from the payload to a Base64-encoded signature.

4. Download the attachment using the download URL.

5. Decrypt attachment data and save to file.

Save the message attachments as local files under the current path.

NOTE You always get a download URL from the /preDownload step even if the parameters are not
correctly set. However, the downloaded data is not valid in such a case.

On your server

Locate and run the 05_downloading_attachments.py file.

Expected MSP server response
2 attachments found in the message.
writing to local file: 52106351067__A31A08AE-A449-4EDD-A735-458D17ADF9EA.JPG
writing to local file: 52106351346__8CEE7676-0E8C-4D19-83B5-C680836837CC.JPG

Error codes

Error Troubleshooting Tip

400 “not authorized” Make sure you are using the correct encoding for attachment signature. It
should be a Base64-encoded string.

400 error when calling /

decodePayload for

interactive data payload

 Make sure you have “bid” as a header in your request.

Problems successfully

decrypting the attachment

Make sure you are using the correct algorithm to decrypt. Once you are

confident that the encryption algorithm works as expected, you may try to
encrypt a file, and immediately decrypt the data. If the file can be recovered,
then the decryption works as expected.

Business Chat API Integration Tutorial April 2020.1 16

https://developer.apple.com/documentation/businesschatapi/messages_received/downloading_and_decrypting_an_attachment

RECEIVING AND SENDING MESSAGES

Ensuring Signature Fields are Correct

There are several signature fields used by Business Chat, some of which are base 16 and others are base
64 encoded fields.

TIP

1. When receiving a message from Business Chat, the signature field of the attachment is hexadecimal
(base 16) encoded

2. When sending the signature header in the preDownload request, the value is base64 encoded

3. When sending a message from your MSP to Business chat, the "signature" field is actually called
signature-base64 and is base64 encoded

Business Chat API Integration Tutorial April 2020.1 17

SENDING LIST AND TIME PICKERS

Sending List and Time Pickers
Interactive messages provide a range of functionality, from letting the customer select an item from a list to
scheduling an appointment. Business Chat comes with a set of interactive messages that you can use, or

you can create and use custom interactive messages. When sending an interactive message to the
customer, set the type field to interactive. For more information, see List Picker and Time Picker.

In this section’s exercises, you learn how to provide a rich user experience using list and time pickers.

Exercise: Sending a Text-only List Picker
In this exercise, you generate a request ID to send a text-only list picker payload to trigger an item selection

in the Messages app.

The request ID ensures that the requests and responses are properly paired. In situations where an agent
sends multiple interactive messages, the MSP may receive responses out-of-order or no response for

some requests. The request ID ensures that the responses match the corresponding request.

TIP When parsing the list picker response, note that the selected options of the list picker are sent back
to the MSP as a subset of the options in the list picker.

Complete the following tasks:
1. Generate a request ID.

2. Assemble list picker item configuration with optional sections.

3. Send a message with payload.

On your server

1. Locate the code zip folder and unzip it.

2. Open and edit the 06_send_text_list_picker.py file by inserting the destination_id, located towards
the bottom of the file, with the source_id from the output in Exercise: Receiving a Text Message.

3. Save and run the 06_send_text_list_picker.py file.

Which version of version?

The ‘v’: 1 key-value pair and the ‘version’: ‘1.0’ pair both indicate version numbers. The ‘v’ indicates the
version of the Business Chat API, corresponding to the endpoint version at https://mspgw.push.apple.com/
v1. The ‘version’ inside of the interactive message indicates the version of the list picker implementation
that is requested.

Currently both have only a single version. We architected the system, however, to up-rev the list picker and
other interactive message components as a higher frequency than the underlying API.

Also note that the ‘v’ version is an integer data type, while the ‘version’ is a string.

Expected MSP server response
Business Chat server return code: 200

Business Chat API Integration Tutorial April 2020.1 18

https://developer.apple.com/documentation/businesschatapi/messages_sent/interactive_messages/list_picker
https://developer.apple.com/documentation/businesschatapi/messages_sent/interactive_messages/time_picker

SENDING LIST AND TIME PICKERS

If your custom message isn’t being shown on your client device, use the following matrix identifying the
type of messages sent and how they appear in the UX.

Exercise: Sending a List Picker with an Image
In this exercise, you send a list picker with an image payload to trigger an item selection in the Messages
app. When customer’s responds to a list picker with a text message, the two messages are delivered
separately without association.

TIP If you cannot see the images in interactive message bubbles, make sure your image DPI is set to 72,
which is the common DPI setting for iOS.

Complete the following tasks:
1. Base64-encode the image data.

2. Assemble a list picker payload with the encoded image data.

3. Send a list picker message with the payload.

On your server

1. Locate the code zip folder and unzip it.

2. Locate and edit the 07_send_list_picker_with_image.py file by inserting the destination_id, located
towards the bottom of the file, with the source_id from the output in Exercise: Receiving a Text
Message.

3. Save and run the 07_send_list_picker_with_image.py file.

Expected MSP server response
Business Chat server return code: 200

Exercise: Sending a List Picker with Multiple Images
In this exercise, you send a list picker with multiple images and receive a data reference for use in the next
exercise, Exercise: Sending a List Picker Using a Data Reference.

Complete the following tasks:
1. Perform iteration over a dictionary containing three image files, encrypting each for transmission.

2. Use references in JSON to specify which images go with each section of the list picker.

3. Print out the data reference in JSON format for use in the next exercise, Exercise: Sending a List Picker
Using a Data Reference.

Message Type Reply Message Response Message

Text Picture Text Picture

List Picker ✓ ✓ ✓ ✓

Business Chat API Integration Tutorial April 2020.1 19

SENDING LIST AND TIME PICKERS

Use the same List Picker from Exercise: Sending a List Picker with an Image. Note the references specify
multiple images. You use a dictionary to match the image identifiers in JSON to the file names. Then, loop

through the images to encrypt each one and add it to the payload.

This example includes an additional header parameter, include-data-ref, that is set to true. This

setting directs the Business Chat server to return the data reference. Because HTTPS header key-value
pairs are string only, set the value, true, to a four character string.

On your server

1. Locate and edit the 08_send_list_picker_with_multiple_images.py file by inserting the
destination_id, located towards the bottom of the file, with the source_id from the output in
Exercise: Receiving a Text Message.

2. Save and run the 08_send_list_picker_with_multiple_images.py file.

3. Save the data reference from the output to use in later exercises.

Expected MSP server response
Business Chat server return code: 200
Business Chat server response body:
{
 "dataRef": {
 "bid":"<bid save for next exercise>",
 "owner":"<owner save for next exercise>",
 "url":"<url save for next exercise>",
 "size":"<size save for next exercise>",
 "signature":"<signature save for next exercise>",
 "signature-base64":"<signature-Base64 save for next exercise>",
 "title":"Select Produce",
 "dataRefSig":"<dataRefSig save for next exercise>"
 }
}

Exercise: Sending a List Picker Using an Interactive Data
Reference (IDR)
In this exercise, you reuse a previous interactive data reference to send a list picker.

An Interactive Data Reference in Business Chat is like a super-charged URL. It’s a pointer to a set of large
(usually greater than 10KB, but can be 100MB or more) media assets that is easier to use rather than
expending the bandwidth to upload or download assets. It conforms to the JSON standard in a form that is
unique to Business Chat.

The IDR allows you to send the list picker using an abbreviated handle instead of uploading all the
attachments again.

On your server

This exercise is based on the list picker sent in Exercise: Sending a List Picker with Multiple Images, and
that you got the data reference from the response. Make sure the dataRefSig field is present in the data

reference.

Business Chat API Integration Tutorial April 2020.1 20

SENDING LIST AND TIME PICKERS

1. Locate and edit the 09_send_list_picker_with_data_ref.py file with the following values:

a) Insert the destination_id, located towards the bottom of the file, with the source_id from the
output in Exercise: Receiving a Text Message.

b) Insert the interactive_data_ref, located towards the bottom of the file, with the output data
reference from Exercise: Sending a List Picker with Multiple Images.

2. Save and run the 09_send_list_picker_with_data_ref.py file.

Expected MSP server response
Business Chat server return code: 200

Exercise: Sending a Time Picker
In this exercise, you send a message payload to trigger a time picker in the Messages app on the
customer’s device.

When setting the times for your list picker, the start date cannot be earlier than the current date/time,

otherwise the times are removed from the time picker. If all items in the time picker are for past times, then
the device displays an empty time picker with a message "No times available.” You can have the following
types:

• long duration items, even extending to days long

• zero time length duration items, use this feature with discretion

• across different days, different months or different years

Complete the following tasks:

1. Generate time picker request ID.

2. Assemble time picker configuration with or without timezone offset.

3. Send message with payload.

Sending a time picker using the customer’s timezone
In this example, you are sending the time of an event happening in San Francisco on 2020-10-15 at

10:00am (PDT: GMT-7 hours), and you want the customer’s Messages app to display the time according to
the customer’s time zone setting. For example, for a customer in New York (EDT: GMT-4 hours) the time
picker would display 2020-10-15 at 1:00pm.

Sending the time of an event requires you to convert the event time to GMT, 2020-10-15T17:00+0000,

and use it as the startTime value. In this case, you do not set the timezoneOffset value.

On your server

1. Locate and edit the 10_send_time_picker_with_user_timezone.py file by inserting the
destination_id, located towards the bottom of the file, with the source_id from the output in
Exercise: Receiving a Text Message.

2. Save and run the 10_send_time_picker_with_user_timezone.py file.

Business Chat API Integration Tutorial April 2020.1 21

SENDING LIST AND TIME PICKERS

Sending a time picker using a fixed timezone
In this example, you are also sending the time of an event happening in San Francisco on 2020-10-15 at
10:00am. However, you want the customer’s Messages app to display 2020-10-15 at 10:00am regardless

of the customer’s timezone.

Setting the time of the event regardless of the customer’s timezone requires you set the startTime value

as GMT, 2020-10-15T17:00+0000. And you need to set a timezoneOffset, in this case -420 minutes

for San Francisco PDT.

With the timezoneOffset set, the customer’s device always displays the time in that specific timezone

without converting the time to the customer’s timezone.

On your server

1. Locate and edit the 11_send_time_picker_with_fixed_timezone.py file by inserting the
destination_id, located towards the bottom of the file, with the source_id from the output in
Exercise: Receiving a Text Message.

2. Save and run the 11_send_time_picker_with_fixed_timezone.py file.

Expected MSP server response
Business Chat server return code: 200

If your custom message doesn’t show on your client device, use the following matrix identifying the type of

messages sent and how they appear in the UX.

Message Type Reply Message Response Message

Text Picture Text Picture

Time Picker ✓ ✓ ✓ ✓

Business Chat API Integration Tutorial April 2020.1 22

ADVANCED INTERACTIVE MESSAGING

Advanced Interactive Messaging
You can use an iMessage extension to give your customers an interactive experience that is unique to your
business.

Exercise: Retrieving a Large Message Using an Interactive
Data Reference
In this exercise, you learn how to decrypt, decode, and parse a data reference that results from the
customer response to an interactive message.

NOTE This exercise is the most difficult for most engineers who implement Business Chat. Once you
have this one working, it will get easier from there.

A List Picker response includes all of the images of the original picker. This ensures that the response

JSON has a complete set of digital assets to render the bubble, images, user selection, and future
interaction. The other interactive messages work this same way.

When the response payload exceeds 10kB, Business Chat saves the full JSON to a cloud server and the

MSP receives an Interactive Data Reference (IDR). The IDR has URLs to retrieve the full response payload
and decryption keys to decipher the response. The response that your MSP receives is an Interactive Data
Reference (implied by the “interactiveDataRef” key):

https://developer.apple.com/documentation/businesschat/enhancing_the_customer_s_user_experience/

receiving_large_interactive_data_payloads

Your messaging platform must parse the IDR and use it to download the full JSON of the response. Use the
full JSON to complete the action of interactive message.

On your server

1. Locate the code zip folder and unzip it.

2. Locate and run the 12_large_interactive_message.py file to set up the listener.

3. Go through the Exercise: Sending a List Picker with Multiple Images to send a list picker to your test
device.

4. On your test device, make your selections, enter a text message and send it.

5. Observe the interaction between your MSP and the Business Chat service.

6. Open the file data_reference_debug.json in your favorite text editor to see the full payload
retrieved by script.

If your custom message doesn’t show on your client device, use the following matrix identifying the type of

messages sent and how they appear in the UX.

Business Chat API Integration Tutorial April 2020.1 23

ADVANCED INTERACTIVE MESSAGING

* Encoded as an attachment rather than interactive message data
n/a = Not applicable as there is no generated response message

Message Type Reply Message Response Message

Text Picture Text Picture

Custom Interactive Messages n/a n/a * *

Business Chat API Integration Tutorial April 2020.1 24

APPLE PAY IN BUSINESS CHAT

Apple Pay in Business Chat
When a business asks for payment from a customer who is purchasing goods and services through
Business Chat, the customer can use Apple Pay to make the payment. For more information, see Apple Pay

in Business Chat.

To support refunds to Apple Pay purchases, use a workflow outside of Business Chat. For more information,
see About Apple Pay for merchants.

Exercise: Send an Apple Pay Request—Basic Functionality
The following Apple Pay exercise covers the basics needed for you to send an Apple Pay request and how
to read the return message. To qualify as a MSP, you’ll need to demonstrate the basic Apple Pay
functionality on your platform. PRO TIP When you host the merchant payment token generator (called

payment gateway here), you will receive a payment transaction token. For the sake of running a demo, you
can simply retain the token and ensure that no payment transaction is executed. This will allow you to run
tests and demo your implementation without incurring charges through your Apple Pay account.

Complete the following tasks:

1. Setup and configure a merchant account with ID and certificates.

2. Enter your Merchant information into Apple Business Register to link your Apple Pay Merchant account
with your Business Chat service.

3. Run a test payment gateway that does not actually process any payment.

4. Start a test payment session from the Apple Pay gateway.

5. Send a test payment request as a message using Business Chat.

6. Accept a test payment on iPhone.

7. Receive the test payment at the gateway.

8. Receive the Business Chat interactive message indicating success or failure of the payment request.

For more information on sending Apple Pay requests, see Sending an Apple Pay Payment Request.

Step 1: Set up a merchant account
If you already have an Apple Pay Merchant account, skip ahead to step 4 and download the Merchant
items.

1. You must have an Apple Developer account in order to create an Apple Pay Merchant account. If you do
not have an Apple Developer account, please set one up at developer.apple.com. The approval time
may take several days.

2. Use one of the following tutorials to add Apple Pay Merchant capabilities to your Apple Developer
account:

• Apple Pay “Configuring Your Developer Account” tutorial video:

- https://developer.apple.com/videos/play/tutorials/configuring-your-developer-account-for-apple-
pay/

• “Configuring Your Environment” section in Apple Pay JS Documentation:
- https://developer.apple.com/documentation/apple_pay_on_the_web/configuring_your_environment

3. Create a Merchant ID, a Payment Processing Certificate, and a Merchant Identity Certificate in your
Apple Developer account.

Business Chat API Integration Tutorial April 2020.1 25

https://developer.apple.com/documentation/businesschatapi/messages_sent/interactive_messages/apple_pay_in_business_chat
https://developer.apple.com/documentation/businesschatapi/messages_sent/interactive_messages/apple_pay_in_business_chat
https://support.apple.com/en-us/HT204274
https://developer.apple.com/documentation/businesschatapi/messages_sent/interactive_messages/apple_pay_in_business_chat/sending_an_apple_pay_payment_request
http://developer.apple.com
https://developer.apple.com/videos/play/tutorials/configuring-your-developer-account-for-apple-pay/
https://developer.apple.com/videos/play/tutorials/configuring-your-developer-account-for-apple-pay/
https://developer.apple.com/documentation/apple_pay_on_the_web/configuring_your_environment

APPLE PAY IN BUSINESS CHAT

4. Make a note of your Merchant ID from your account.

5. Download the Payment Processing Certificate and Merchant Identity Certificate.

Step 2: Configure your Apple Business Register account
Use the following steps to enter your Merchant Information into your Business Chat account:
1. Go to register.apple.com, and sign in with your Apple ID as the administrator or technical contact for the

business that owns your Apple Pay credentials.

2. Go to your company’s Business Chat Accounts and find the appropriate business account. If your
company has multiple accounts (as most do), ensure that you enter the Merchant information into the
Business Chat account corresponding to your company’s Apple Pay capability.

NOTE Each Business Chat ID can have only one Apple Pay Merchant ID.

3. Find the Apple Pay section in account configuration (as shown below).

4. Click on Edit.

5. Enter the Merchant ID into the appropriate field, and submit for review.

6. Once the updated configuration is active, you are able to use the Merchant ID in Business Chat.

Step 3: Register your merchant ID
Use the following steps to verify that your Merchant ID is registered at Apple Business Register website:
1. Go to register.apple.com, and sign in with your Apple ID as the administrator or technical contact for the

business that owns your Apple Pay credentials.

2. Go to your company’s Business Chat Accounts and find the appropriate business account. If your
company has multiple accounts, ensure that you enter the merchant information into the Business Chat
account corresponding to your company’s Apple Pay capability.

3. Find the Apple Pay section in account configuration (as shown below).

4. Click on Edit.

5. Enter the Merchant ID into the appropriate field, and submit for review.

6. Once the updated configuration is active, you can use the Merchant ID in Business Chat.

Step 4: Generate the PEM file required by the payment session endpoint
This step is necessary to work with the sample code provided in this document. If you have an Apple Pay

endpoint already in production and are using it in this exercise in that environment, then you may not need
to follow this procedure.

We use command line tools for this procedure. If you are on macOS and familiar with Keychain Access, you

can perform these steps using that application instead.

1. Create a directory for your key store. 

mkdir keysncerts
cd keysncerts/

Business Chat API Integration Tutorial April 2020.1 26

http://register.apple.com
http://register.apple.com

APPLE PAY IN BUSINESS CHAT

2. Initiate keystore with RSA 2048 key pair and generate a signing request. 

keytool -genkeypair -keystore fileforkeys.p12 -storetype pkcs12 -alias
keyone -keyalg RSA -keysize 2048

keytool -certreq -keystore fileforkeys.p12 -storetype pkcs12 -alias keyone
-sigalg SHA256withRSA > my_request.csr

3. Generate an Apple Pay Merchant Identity certificate. 
 
Log into your Apple Developer account on developer.apple.com. Navigate to your certificates. Then
upload my_request.csr to developer portal, generate the Merchant Identifier certificate, and it will
download as merchant_id.cer. 

openssl pkcs12 -in fileforkeys.p12 -out pv.key -nodes -clcerts

 Move merchant_id.cer over to the keysncerts directory. Then convert and export it as a PEM file.
openssl x509 -inform DER -outform PEM -in merchant_id.cer -out
server.crt.pem

4. Generate the payload file. 

vi data.json

 Enter the file, save, and exit.
{
 "merchantIdentifier": <SHA256 hash of your text merchant identifier>,
 "domainName": <domain name associated with Apple Pay merchant account>,
 "displayName": <Merchant name in human readable form>,
 "initiative": "messaging",
 "initiativeContext": "https://<...your endpoint URL...>/paymentGateway"
}

5. Issue the command to get your Merchant Payment token. 

curl -k -vvvv --request POST -d "@data.json" --header "Content-Type:
application/json" --cert server.crt.pem --key pv.key "https://apple-pay-
gateway.apple.com/paymentservices/paymentSession"

 
If you are able to retrieve the token from the command line above, use the pen file and private key
generated here on your server. 

Step 5a: Run a test payment gateway
Run a test payment gateway to verify that you can receive payment requests from the customer. For more
information about the payment gateway API, see PKPaymentAuthorizationController.

On your server

1. Locate the code zip folder and unzip it.

2. Locate and run the 13_test_payment_gateway.py file.

Business Chat API Integration Tutorial April 2020.1 27

http://developer.apple.com
https://developer.apple.com/documentation/passkit/pkpaymentauthorizationcontroller

APPLE PAY IN BUSINESS CHAT

Expected MSP server response

Payment received!
Request Identifier: <request identifier in message payload>
Payment Method Dictionary: {'displayName': 'Visa 1234', 'type': 'Credit',
'network': 'Visa'}

Step 5b: Send Apple Pay Request
Respond with a test payment session to a request from the test payment gateway, using the following
fields in the payload:

• merchantIdentifier SHA256 hash represented in hexadecimal of merchant identifier

• displayName Your merchant name in text (human readable)

• domainName Your base website without any punctuation or prefix (example: “developer.apple.com").
This must match the domainName for your merchant account.

• initiative Set to messaging for Business Chat

• initiativeContext Your payment gateway URL, with the https:// prefix. This is a publicly
exposed network endpoint. It does not work from a private network.

The domainName field is used for authentication versus the merchant information in Apple Pay, so the
HTTPS prefix and punctuation is not used. The initiativeContext field defines an endpoint called
during the transaction, so the HTTPS prefix and punctuation are required.

On your server

1. Locate and edit the 14_send_apple_pay_request.py file by inserting the destination_id, located
towards the bottom of the file, with the source_id from the output in Exercise: Receiving a Text
Message.

2. Save and run the 14_send_apple_pay_request.py file.

Step 5c: Enhance your Apple Pay Request
In the previous exercise you successfully sent an Apple Pay request. The appearance, though, was very
plain. In this exercise, you'll learn a few techniques to enhance your Apple Pay transactions on Business
Chat and use the full features of this product.

When reading the code, you should notice that it can recognize and parse the payment response.

The next change is the new handlers for new endpoints. The use cases show you how businesses can
update the shopping cart depending on a customer’s payment method, shipping method, or contact

information. For illustrative purposes, we made all of these endpoints on our main domain. They can be URL
endpoints to different domains for different functions.

Below are the different endpoints:

Business Chat API Integration Tutorial April 2020.1 28

http://developer.apple.com

APPLE PAY IN BUSINESS CHAT

Step 5d: Add images to your Apple Pay Request
By adding a Base64-encoded image of their order, customers can visually verify their purchase. For more
information about image encoding, see Exercise: Sending a List Picker with an Image.

In this exercise, two fields have been added that require the customer to provide additional information to

complete the transaction. The fields, requiredBillingContactFields and

requiredShippingContactFields, are arrays that require the customer to provide a postal address,

name, and phone. We recommend adding these fields for physical goods. For virtual goods, fewer fields
may be more appropriate. For more information about the list of available values for billing and shipping
contact fields, see ApplePayContactField.

TIP On the client device, these required fields default to the information defined in Settings > Wallet &
Apple Pay. The user can overwrite these fields, though, for any particular transaction.

To make up the payment request, multiple line items have been added. These items appear in the order

given in the payload on the client device in the Apple Pay drawer for Business Chat.

Set customer expectations about discounts or charges by using a line item for each charge or discount.
Each line item can be a zero, positive, or negative value to indicate the type of charge or discount. The total

amount of the order must be greater than zero.

The amounts are specified by strings. This allows flexibility across different currencies and payment
systems. For more information about payment line items, see lineItems.

Endpoint Description
/fallback Captures the response for devices that are not able to use Apple Pay.

The request redirects the client device to this URL which allows you to
explain a procedure for completing the transaction through an

alternative payment medium.

/orderTracking Captures changes to the line items, amounts, or status for each line
item. If set, it calls on the first presentation of the line items to the user.

/paymentMethodUpdate Called when the payment method, such as debit, credit, or cash,
changes. For more information, see ApplePayPaymentMethodUpdate.

/shippingContactUpdate Called when any of the shipping contact details, such as shipping
address, associated email address, or associated phone number,

change. Also called when the customer taps their device to initiate an
Apple Pay session. For more information, see
ApplePayShippingContactUpdate.

/shippingMethodUpdate Called only when the shipping method is changed. For more
information, see ApplePayShippingMethodUpdate.

Business Chat API Integration Tutorial April 2020.1 29

https://developer.apple.com/documentation/apple_pay_on_the_web/applepaypaymentmethodupdate
https://developer.apple.com/documentation/apple_pay_on_the_web/applepayshippingcontactupdate
https://developer.apple.com/documentation/apple_pay_on_the_web/applepayshippingmethodupdate
https://developer.apple.com/documentation/apple_pay_on_the_web/applepaycontactfield
https://developer.apple.com/documentation/apple_pay_on_the_web/applepaypaymentrequest/1916120-lineitems

APPLE PAY IN BUSINESS CHAT

On your server

1. Locate and run the 15_handle_payment_gateway.py in the background to set up the server with the
endpoint listeners.

2. Locate and edit the 16_send_rich_apple_pay_request.py file by inserting the destination_id,
located towards the bottom of the file, with the source_id from the output in Exercise: Receiving a
Text Message.

3. Save and run the 16_send_rich_apple_pay_request.py file to send the payment request.

4. Approve the payment on your test device and observe the response on your server.

Expected MSP server response

NOTE For easier understanding, the u has been removed from the MSP server response below.

Payment received!
Request Identifier: cb43a <truncated>
Payment Method Dictionary: {
 'displayName': 'Visa 8087','type': 'Debit', 'network': ’Visa'
 }

orderTracking received!
ordertracking_payload: {
 'version': '1.0',
 'payment':
 {
 'summaryItems': [{
 'amount': '1.5',
 'type': 'Final',
 'label': 'Adoption fee’
 },
 {
 'amount': '1',
 'type': 'Final',
 'label': 'Required shots’
 },
 {
 'amount': '2',
 'type': 'Final',
 'label': 'Outtake fee’
 },
 {
 'amount': '-1',
 'type': 'Final',
 'label': 'Daily discount’
 },
 {'amount': '3.5',
 'type': 'Final',
 'label': 'Your Total’
 }],
 'errors':
 []},
 'requestIdentifier': 'cb43a <truncated>'}

payload {'interactiveDataRef': { <truncated> }

Business Chat API Integration Tutorial April 2020.1 30

APPLE PAY IN BUSINESS CHAT

Step 6: Send a payment request as a message
Using the code from 14_send_apple_pay_request.py, send a payment payload for a purchase item using
the merchant session.

Expected MSP server response

Business Chat server return code: 200

If after the payment request message was sent, it showed up as “Invalid Payment Request” in the
Messages client, check the following:
• Make sure your payment gateway URL is in the valid URL format.

• Make sure you are obtaining a new merchant session every time you are sending a payment request.

Step 7: Approve the test payment on your iPhone
You should have received the Apple Pay test payment request on your device from the previous step.

Tap the payment message to make the test payment:

Expected MSP server response
After the test payment completes, an interactive message is delivered to your endpoint with the Apple Pay
payload. In the payload there is a state field which indicates whether the test payment was approved in

your payment gateway. Be aware that you are expected to confirm the test payment transaction through
your payment system, rather than relying on the state of the return message.

You should see the following output from your Payment Gateway:
Payment received!
Request Identifier: <request identifier in message payload>
Payment Method Dictionary: {'displayName': 'Visa 1234', 'type': 'Credit',
'network': ‘Visa'}

Business Chat API Integration Tutorial April 2020.1 31

APPLE PAY IN BUSINESS CHAT

Troubleshooting tips

If you can’t receive payments in your payment gateway, check the following:
• Ensure you have a valid merchant ID, and you already verified your domain.

• Check your payment gateway is listening to POST requests on /paymentGateway.

If you receive a 400 error when sending the Apple Pay interactive message, make sure that you have

registered your merchant ID on your account at Apple Business Register.

If your custom message doesn’t show on your client device use the following matrix identifying the type of
messages sent and how they appear in the UX.

Message Type Reply Message Response Message

Text Picture Text Picture

Apple Pay ✓ ✓ ✓ ✓

Business Chat API Integration Tutorial April 2020.1 32

https://register.apple.com/

AUTHENTICATION IN BUSINESS CHAT

Authentication in Business Chat
The Business Chat authentication feature allows a customer service agent or a bot to send an authorization
access request to a customer for specific information.

This request displays as a bubble on the device with a Sign In call to action. The customer then signs into
the authentication service using a username and password. This feature can be used for financial services,
insurance, and e-commerce to ensure that customers authorize access to their private data in a way that is

not visible to either the customer service provider or Apple's Business Chat servers.

There are two approaches to authentication. You can use a third-party service as the authentication
service, password autofill, or you can use an authentication endpoint that you already control. For more

information, see Authentication.

The Business Chat authentication feature relies on advanced cryptography. This document assumes a
sufficient background in the cryptographic concepts to implement the standards described.

For readers who seek a better understanding about the field of cryptography in general, see the following:

• https://www.crypto101.io

• https://auth0.com/docs/protocols/oauth2/oauth-state

For readers who want to understand authentication and authorization technologies:

• https://www.manning.com/books/oauth-2-in-action

For readers who want to read about the standards used by our technology:

• https://oauth.net/2/

• https://tools.ietf.org/html/rfc6749#section-4.1.2

To learn how to pass authentication information using the /authenticate endpoint, complete the

following exercises:

1. Exercise: Sending an Authentication Request.

2. Exercise: Receive and Parse an Authentication Response.

3. Exercise: Decode the Auth Token and Retrieve User Data.

Exercise: Sending an Authentication Request
For these exercises, we use a third-party service, LinkedIn's OAuth2 API, for the examples.

Before your chosen OAuth2 provider will be available, you must request a security audit for your account in
Apple Business Register. This is described in more detail below. Please allow 2-3 business days for this
approval.

Most third-party authentication service providers ask you to create an app on their platform. Some

platforms simply refer to it as setting up a client, which is the name given under the OAuth2 spec, and some
refer to it as an OAuth2 service.

For each service used, you have to tell the service where to send requests. This is called the redirect_uri or

callback URL. Always enter https://auth.businesschat.apple.com into the field.

Prior to sending authentication requests, you need to retrieve the following fields from each third-party
service and enter these into Register:
• Response type, either code or token [*]

• OAuth URL

Business Chat API Integration Tutorial April 2020.1 33

https://developer.apple.com/documentation/businesschatapi/messages_sent/interactive_messages/authentication
https://www.crypto101.io
https://auth0.com/docs/protocols/oauth2/oauth-state
https://www.manning.com/books/oauth-2-in-action
https://oauth.net/2/
https://tools.ietf.org/html/rfc6749#section-4.1.2

AUTHENTICATION IN BUSINESS CHAT

• Token URL, for the token process; if you use theImplicit flow, leave this URL blank

• Client identifier

• Client secret

• Scope

• Decrypted token endpoint URL

PRO TIP [*] The response type “code” corresponds to Authorization Code grant type in the OAuth2 spec.
The response type “token” corresponds to the Implicit grant type in the spec. These designations can
lead to confusion since the “token” response type actually requires the Token URL in Apple Business
Register to be blank. The authorization server provides the token directly (“implicitly”) so it does not have
to be retrieved by the Token URL.

The response type, OAuth URL, and token URL are from the API documentation of the authentication
service provider. The client identifier and client secret are generated for you within their API account
webpage.

The scope and decrypted token endpoint URLs go together, with some authentication providers offering
different types of access to information. Check the API documentation for the details of which strings to
use for these fields.

Step 1: Setup an Authentication Endpoint
In this first exercise, you set up an authentication service and add information about the service into Apple

Business Register. There is no code to run for this task.

To follow along with these exercises, you’ll need a LinkedIn developer and customer account for testing.
1. Log into LinkedIn Developer and click Create App from their API site.

2. Enter the appropriate information into the app profile on the site. Where you see Redirect URL, enter:
https://auth.businesschat.apple.com

3. Retrieve the Client Identifier and Client Secret. These are string fields that are unique to your
application, and required by Register for the LinkedIn endpoint to serve as your authentication service.

4. Go to your existing Business Chat account in Register (https://register.apple.com), find the End User
Authentication section, and enter the following values:

• OAuthURL: https://www.linkedin.com/oauth/v2/authorization

• Token URL: https://www.linkedin.com/oauth/v2/accessToken

• Client Identifier: Use the unique identifier from the LinkedIn API

5. Make sure you click Submit at the bottom of the account page. Changes on Register only become
active after the profile is submitted and approved. The security audit for your authentication service will
take 2-3 business days. Please allow sufficient time in your development schedule for this approval.

6. To ensure prompt approval, send an email reminder about the authentication audit to
businesschatsupport@apple.com. Include the Business ID or a link to the URL in Apple Business
Register.

Step 2: Generate Public/Private Key Pair and Nonce
This task demonstrates how to produce a unique nonce and a private/public key pair for use in the
authentication request payload.

Business Chat API Integration Tutorial April 2020.1 34

https://www.linkedin.com/developers/apps
https://register.apple.com
mailto:businesschatsupport@apple.com

AUTHENTICATION IN BUSINESS CHAT

Complete this task by running the code in Listing generate_key_pair_and_nonce.py below and observe that
the nonce and public/private key pairs are unique for each.

The nonce is a short string that is unique to each transaction. It does not have to be cryptographically
secure to be compliant. It is a unique value for each request to ensure that a man-in-the-middle cannot
perform a replay attack on the authentication provider's endpoint. To learn more about the reason for

needing a unique nonce on each request, see https://auth0.com/docs/protocols/oauth2/oauth-state.

This code example below generates a random 32-character string. We could use a hash of the date and
time, a sequential progression, or even a different length of string. The length of the string is explicitly left

out of the spec, see https://tools.ietf.org/html/rfc6749#section-4.1.2

The key pair is formed by a cryptographically secure library. We use the hazmats methods of the Python
cryptography library for the code samples. For Java, you can use BouncyCastle. Other language and
platform combinations require a different library.

Use a well-tested and validated library. Many published open-source libraries may not be the best library
for your platform. You can also write your own unit tests to ensure the library is compliant with the
cryptography standards and security best practices that you want to build into your product.

On your server

1. Locate the code zip folder and unzip it.

2. Locate and run the 17_generate_key_pair_and_nonce.py file.

Expected MSP server response

Ready to generate authentication request with parameters
request_id: 25d96 <truncated>
responseEncryptionKey: BP/Cc <truncated>
nonce (aka state): L+C55 <truncated>
private key, base64: Mxhdr <truncated>

Step 3: Send the Authentication Request
In this exercise, you send an authentication request to the customer’s device.

The authentication request displays as a login bubble on the device. When the customer clicks the bubble,
a LinkedIn login drawer appears and the customer enters their LinkedIn username and password. After
submitting the credentials, the login drawer disappears and an authentication result is displayed.

The authentication request is sent to a distinct endpoint /authenticate, specifically https://

mspgw.push.apple.com/v1/authenticate. After a successful authentication, your MSP continues

receiving non-authentication traffic on your /message endpoint.

On your server

The python code is split into two files: auth_util.py and 18_send_auth_request.py. The first file, auth_util.py,
is a library of handlers used for the exercises in the authentication section. The second file,
18_send_auth_request.py, calls the functions in auth_util.py file and sends the authentication request to the

customer's device.

Business Chat API Integration Tutorial April 2020.1 35

https://auth0.com/docs/protocols/oauth2/oauth-state
https://tools.ietf.org/html/rfc6749#section-4.1.2

AUTHENTICATION IN BUSINESS CHAT

1. Locate and edit the 18_send_auth_request.py file by inserting the destination_id, located towards
the bottom of the file, with the source_id from the output in Exercise: Receiving a Text Message.

2. Save and run the 18_send_auth_request.py file and ensure that the import can successfully reference
the auth_util.py file.

Expected MSP server response

Save private key for use later, base 64: n9oMl <truncated>
 * Running on http://0.0.0.0:8002/ (Press CTRL+C to quit)
Business Chat server return code: 200
Send authentication request with parameters

request_id: 8c202 <truncated>
responseEncryptionKey: BGbqf <truncated>
nonce (aka state): LyZzh <truncated>
private key, base64: n9oMl <truncated>

Exercise: Receive and Parse an Authentication Response
In this exercise, we receive an interactive message response at our messaging endpoint with either a
successful login or an unsuccessful login prompted by the authentication request.

The authentication request conforms to the interactive message class, even though it is delivered to its own

endpoint. The response arrives at your CSPs /message endpoint, and conforms to an interactive message

response.

When developing your Business Chat integration, you need to parse interactive message responses into
the different types to ensure that each can be routed to the correct handler. For this exercise, we show a
way of parsing the response to filter out the authentication response from other interactive message

response types.

On your server

1. Locate and run the 19_receive_auth_response.py file in background mode from the command line.

2. Ensure the library auth_util.py is available to the 18_send_auth_request.py code.

3. Run the code from 18_send_auth_request.py to generate the authentication request.

4. On the device, log in to LinkedIn.

5. On the console, observe the payload received by your MSP.

Expected MSP server response
Make a note of the encrypted token displayed in the output, this piece is used in the next exercise.

NOTE For easier understanding, the u has been removed from the MSP server response below.

Business Chat API Integration Tutorial April 2020.1 36

AUTHENTICATION IN BUSINESS CHAT

payload
 {
 'interactiveData': {
 'sessionIdentifier': 'f73dd <truncated>',
 'bid': 'com.apple.messages. <truncated>',
 'data': {
 'receivedMessage': {
 'style': 'icon',
 'title': 'Sign In to LinkedIn’
 },
 'authenticate': {
 'status': 'authenticated',
 'token': 'BJuPw <truncated>'
 },
 'replyMessage': {
 'style': 'icon',
 'alternateTitle': 'You Signed In',
 'title': 'You Signed In’
 },
 'version': '1.0',
 'requestIdentifier': '8c202 <truncated>'
 }
 },
 'sourceId': 'urn:mbid:AQAAY <truncated>',
 'destinationId': '...<removed>...',
 'v': 1,
 'type': 'interactive',
 'id': 'e7ba2 <truncated>'
 }
 interactive_data: {
 'sessionIdentifier': 'f73dd <truncated>',
 'bid': 'com.apple.messages. <truncated>',
 'data': {
 'receivedMessage': {
 'style': 'icon',
 'title': 'Sign In to LinkedIn’
 },
 'authenticate': {
 'status': 'authenticated',
 'token': 'BJuPw <truncated>'
 },
 'replyMessage': {
 'style': 'icon',
 'alternateTitle': 'You Signed In',
 'title': 'You Signed In’
 },
 'version': u'1.0',
 'requestIdentifier': '8c202 <truncated>'
 }
 }

request_id: 8c202 <truncated>
status: authenticated
encrypted_token: BJuPw <truncated> #Used in Exercise: Decode the Auth Token

and Retrieve User Data
Our work is done for this routine.

Business Chat API Integration Tutorial April 2020.1 37

AUTHENTICATION IN BUSINESS CHAT

Exercise: Decode the Auth Token and Retrieve User Data
This exercise is about decrypting the auth token and using it to request the customer information from the
authentication provider.

In your full implementation, this exercise requires the copying and pasting of values delivered through a
database or encrypted cloud storage. The result is a print out of the LinkedIn headline and personal
information for the customer who successfully authenticates.

On your server

1. Locate and run the 19_receive_auth_response.py file in the background.

2. Run the 18_send_auth_request.py file and note the public and private key Base64-encodings.

3. When the authentication response is returned, the 19_receive_auth_response.py code returns and
prints the encrypted authentication token. The Base64-encoded string is notably longer than the other
strings.

4. Quickly copy and paste these three strings into the 20_decode_token_get_user_data.py file in the
appropriate designated string fields. You have to work quickly since the encrypted token has an
expiration—usually measured in minutes.

5. Save and run the 20_decode_token_get_user_data.py file. It outputs the LinkedIn headline, full name,
and email address for the customer who authorized the information.

We use a 30 second timeout parameter here, rather than 10 seconds in the other exercises. There is more
latency in this process, so we may need to wait longer for it to complete.

Other third-party services can be similarly provisioned with the appropriate endpoint for using the

decrypted auth token.

Expected MSP server response
You will see the customer’s headline and name in the payload retrieved from LinkedIn.
token (decrypted): AQUqY <truncated>

{
 'headline': 'Engineering Program Manager in Silicon Valley’,
 'lastName': 'Chen',
 'siteStandardProfileRequest': {
 'url': 'https://www.linkedin.com/profile/view?

<truncated>&authType=name&authToken=_VXR&trk=api*a5144733*s5062023*'
 },
 'id': '3FC <truncated>',
 'firstName': 'Mei'
}

Business Chat API Integration Tutorial April 2020.1 38

CONNECTING WITH YOUR CLIENTS

Connecting with Your Clients
When brands first sign up for Business Chat on Apple Business Register (ABR), they are asked to select a
MSP. Your company, as a MSP, will host its own brand. Most companies, however, will subscribe to a MSP
as a service from a company such as yours.

When your MSP earns a new customer, you have to have a few pieces of information from ABR. First, you
have to have awareness that the new brand has chosen your MSP as a service. Second, you need the
Business ID that ABR has generated for that brand. Third, you will need the brand name and logo.

These exercises cover the API that allows these data to be retrieved from ABR.

Exercise: Create a Client Landing Page
To route messages between the Business Chat server and your business clients, create a link between your
clients Business Chat ID and the business client ID on your messaging platform using the Client Landing
Page URL. When your clients access the landing page, they are presented with a login screen. The login
screen logs the business client into your messaging platform and then links their Business Chat ID to a
business client ID that is associated with their business name and logo.

In this step, you connect your client's Business Chat ID to your messaging platform.

1. Download and review the wireframes which are diagrams of how to set up authentication and linking
between your messaging platform and your business clients.

2. Create an HTML page based on the wireframe diagrams that allows your business clients to link their
Business Chat IDs to your business client ID assigned by your messaging platform.

NOTE You will save the values to your own database based on the GET handler for this page, rather than
the POST handler. Most APIs use a POST for submitting information to a database. Because we are
rendering a page visible to the user, this data will be handled by a GET.

This linking process allows messages to pass through your platform to their customer support agents.

3. Ensure the page is HTTPS accessible.

4. Add handlers to read the following fields from the query strings of the URL, validate the data passed,
and save those items in your database: id, name, logo. These will be passed in the URL like this:

https://<YourSiteHost>/<YourSitePath>?
id=<BusinessChatID>&name=<BusinessName>&logo=<LogoURL>

5. When your clients select you as their MSP, Business Chat directs them to your landing page, with a
"Connect to <Customer Service Platform>”, link passing the information you need to send and receive
messages for their business.

6. Automate a process to get the Business Chat ID from the URL and plug it into your messaging platform
to allow your clients to test the messaging connectivity.

Listing 21_create_landing_page.py
from flask import Flask, render_template, request
 app = Flask(__name__)

 @app.route("/landingPage", methods=['GET'])
 def landingPage():
 return render_template("landingPage.html")

Business Chat API Integration Tutorial April 2020.1 39

https://register.apple.com/resources/business-chat/Client_Landing_Page_Wireframes.pdf

CONNECTING WITH YOUR CLIENTS

 app.run(host='0.0.0.0', port=8002)

Client Landing Page HTML
Create a /templates folder in the same directory as the HTML file. There is a sample /templates folder
in the same directory as the other Python files in our API tutorial repository.

The following HTML is based on Jinga2 that runs parallel with Flask.

Listing templates/landingPage.html
 <html>
 <head>
 <title>Landing Page</title>
 </head>

 <body>
 <div class="box">
 <div class="main">
 <h1> Welcome, {{ request.args.get('name') }}! </h1>
 <p>Sign in to connect your Business Chat account.</p>

 <form class="text-center" method="post" action="/
landingPage_csp">
 <input type="text" name="userName" placeholder="User
Name">
 <input type="password" name="userPassword"
placeholder="Password">
 <input type="hidden" name=“BusinessId"
value="{{ request.args.get('id') }}">
 <input type="hidden" name="BusinessName"
value="{{ request.args.get('name') }}">
 <input type="hidden" name="BusinessLogo"
value="{{ request.args.get('logo') }}">
 <input type="submit" value="Get Started">
 </form>
 <p>Don't have an account? Click here to
create one.</p>
 Forgot password or user name?
 </div>
 </div>
 </body>

 <style>
 body{text-align:center;display:flex;justify-
content:center;color:darkgray;background-color:darkgray;}
 .box{padding:2% 10%;max-width:75%;position:fixed;top:20%;border-
radius:20px;background-color:white;}
 h1 {color:black;}
 input{box-sizing: border-box;-moz-box-sizing: border-box;width:
50%;padding:10px;border-style:unset;border:1px solid darkgray;border-radius:
5px;text-align:center;}
 input[type=submit]{color:#007bff;border-color:#007bff;background-
color:initial;}
 img{max-width:200px;}
 p a {color:#007bff;text-decoration:none;}
 a {color:gray;}
 </style>
 </html>

 
Test Your Client Landing Page
To test your "Connect to <Customer Service Platform>" link, append the Business Chat ID, name, and logo
to the end of your landing page URL, similar to the following:

Business Chat API Integration Tutorial April 2020.1 40

© 2019 Apple Inc. All rights reserved. Apple and the Apple logo are trademarks of Apple Inc., registered in the U.S. and other countries.

CONNECTING WITH YOUR CLIENTS

https://<your-domain-here>/landingPage?id=a884eddf-

b0ad-4be4-9c0e-071531638768&name=Connect%20Business%20Chat%20Account&logo=https

://register.apple.com/assets/images/icon/apps/MessagesIcon.png 

NOTE The "Connect to <Customer Service Platform>” link doesn’t show for private CSPs.

Exercise: Publish Your Client Landing Page
In this step, you submit your company’s Client Landing Page to Apple Business Register publishing it to any
new customers of your messaging platform.

1. Log into your company account in Apple Business Register.

2. Find to Customer Service Platforms under Connected Services and click the “Customer Service
Platforms” selection. 

NOTE If you do not see “Customer Service Platforms” here, your company may not be considered a MSP
in our system. Contact your Apple Business Register support representative.

3. Find your main Commercial MSP along the left navigation panel, and click it.

4. Find the “Server Configuration” Section, and then find the “Client Landing Page URL” field under this
Section. 

NOTE If you do not see a “Client Landing Page URL” on any of your CSPs, your company may not be have
a Commercial status MSP account yet. Contact your Apple Business Register support representative.

5. Provide the landing page URL in the field indicated.

6. Click “Submit” button in the lower right corner to publish your changes to ABR. 

Business Chat API Integration Tutorial April 2020.1 41

https://register.apple.com/

iMESSAGE EXTENSIONS

iMessage Extensions
Business Chat provides an iMessage extension that makes it simple for you to send interactive messages to
customers. But if you want to give your customers an interactive experience that is unique to your business,

you can also use the Messages framework to create a standalone iMessage app or extend your iOS app so
that it interacts with Messages. For more information, see iMessage App.

Exercise: Using Custom iMessage Extensions
In this exercise, you perform the following tasks:

• Set up the sample iMessage extension.

• Send an interactive message payload to trigger the sample iMessage extension with custom parameters.

Step 1: Setup a sample iMessage extension
1. Make sure you are using Xcode 9.

2. Download the extension from the Apple Developer Business Chat portal:

• https://developer.apple.com/sample-code/wwdc/2017/iMessage-Business-Chat.zip

3. Open the Xcode project, install and run the extension on the test device.

Step 2: Send a custom iMessage extension payload
1. Copy Development Team ID and Bundle Identifier of the extension from Xcode.

2. Generate the bid parameter using prefix, team ID, and bundle identifier.

3. Assemble the extension parameter using URL parameters.

4. Assemble and send the Message payload.

On your server

1. Locate the code zip folder and unzip it.

2. Open and edit the 22_invoke_custom_extension.py file by inserting the destination_id, located
towards the bottom of the file, with the source_id from the output in Exercise: Receiving a Text
Message.

3. Save and run the 22_invoke_custom_extension.py file.

Expected MSP server response
Business Chat server return code: 200

Business Chat API Integration Tutorial April 2020.1 42

https://developer.apple.com/documentation/messages
https://developer.apple.com/imessage/

iMESSAGE EXTENSIONS

Expected client device response

Initial Response in Messages app Message Extension UI

On the client device, you should see the following
message bubble.

When the customer taps the message bubble, a
detailed map opens up with a location pin.

Business Chat API Integration Tutorial April 2020.1 43

FREQUENTLY ASKED QUESTIONS

Frequently Asked Questions

Most Common Error

What can I do to avoid the most common error in implementing Business Chat?

Check your encoding. Encoding errors are the largest class of technical errors based on our analysis of
support tickets associated with the Business Chat API.

Often developers who have worked entirely or primarily with web technologies are unfamiliar with binary
classes and objects (called byte arrays in some languages). Decoding a base64 encoded string creates a
binary object. That object is not a string. String methods attempted on this object will fail.

Another common failure mode is double-encoding URLs. You should only apply safe-encoding to a URL a
single time. You should use a well-validated library to URL encode and decode, to ensure that it correctly
implements all aspects of the spec.

Many languages safe-encode output to log files and standard output stream. These strings may error out
when used as input in the exact same format as the output. For example, Java safe-encodes many
characters in strings with a / character. Python safe-encodes strings with a u’ at the beginning to indicate
unicode string.

Unfortunately, all valid hexadecimal strings are also valid base64 strings. When you decode a hex string as
Base64, the method will succeed but create an erroneous result. This creates a difficult to triage issue.

User Accounts and Sync of Messages Across Devices

I sent my first message and it shows “Not Delivered” on the device. How do I fix it?

The “Not Delivered” error first encountered when starting Business Chat can have a number of causes.

Check these items:

• Use curl command or similar to ensure that your server is listening on the correct endpoint (remember /
message is appended to the end; remember it is a POST not GET)

• Ensure that the Apple ID test up on your test device is whitelisted for the account on ABR

• Ensure that the email on the test device has been registered as an Apple ID (rather than only the phone
number)

• Check your server log to see whether you received the message from Business Chat and, if so, what error

or HTTP response code was issuedApple

How are messages sync-ed across multiple devices for a single user?

Messages will sync all devices that are on a set of related Apple IDs. An Apple ID can be created from an
email address or a phone number. You can check these associations by logging in at the Apple ID site here:

https://appleid.apple.com/

Business Chat API Integration Tutorial April 2020.1 44

https://appleid.apple.com/

FREQUENTLY ASKED QUESTIONS

Some users set up two or more devices from different Apple IDs. The user has created, perhaps unwittingly,
two zones that acts as separate users. Additional devices will sync with one or the other zone depending

on the Apple ID used, but the two zones will not sync.

Business Chat conversations will have different Opaque IDs across the two zones.

What can we do to prevent issues for users with multiple devices or accounts?

Our recommended practice is to structure User tables is such a way that a single known user may have

more than one Opaque ID. Most users will only enter the system once with one Opaque ID. The possibility is
there, though, that they return under an unknown ID not fully realizing that is the case. This is case is more
common with tech-savvy users who have many devices and many accounts for services they use, than for

the general user population.

What is an Opaque ID?

The Opaque ID is referred to as the destinationId in the code samples for sending messages from your MSP
to a user. It is a unique identifier to each pairing between a Business ID and a user. Each user is definite by a
set of related Apple IDs as noted above.

Routing with Intent and Group IDs

How do I use the intent ID and group ID?

The intent (biz-intent-id) and group (biz-group-id) fields are used to track the source of customer
engagement and to route messages to their appropriate groups.

Intent and group field values can be specified as URL parameters embedded in web sites, apps, or QR
codes, or Business Chat buttons for your website. For example:

https://bcrw.apple.com/urn:biz:Some-Biz-Chat-ID?biz-intent-id=SomeIntent&biz-

group-id=SomeGroup

In the first text message from the customer after starting the conversation through the URL, the MSP can

retrieve the intent and group from the message payload. For example:
{
"body": "Hello",
"sourceId": "<opaque user ID>",
…
"intent": "SomeIntent",
"group": "SomeGroup"
}

The intent field value is specified with “biz-intent-id” key in the URL, but appears under “intent” key in the
message payload. Similarly the group field is specified with “biz-group-id” in the URL and “group” from the
message.

Apple Maps puts the physical address in the biz-intent-id field for users who launch Business Chat from
Maps. Spaces are replaced by plus-sign characters and other safe encoding changes may be made for the
sake of generating a valid URL.

For more information about routing using intent and group IDs, see About Intent, Group, and Body Values.

Business Chat API Integration Tutorial April 2020.1 45

https://developer.apple.com/documentation/businesschat/bcchataction/about_intent_group_and_body_values

FREQUENTLY ASKED QUESTIONS

Compliance and Regulatory Questions

Does the MSP have to delete the conversation history with user in consideration of General
Data Protection Regulation 2016/679 (GDPR)?

According to our security and compliance team:

"The MSP is the data controller. The arrangement between the brand and the MSP guides how it is
handled, with consideration of the regulatory domain they are operating in.

All we offer is a block for further messages from the brand to the user. It is beyond our scope to

manage the relationship any further than that.”

Business Chat API Integration Tutorial April 2020.1 46

GLOSSARY

Glossary
Term Definition

ABC Apple Business Chat

ABR Apple Business Register

agent The receiving entity for a Business Chat dialog. It can be a human customer
support representative or an automated agent.

Apple ID An Apple ID is the email address that has been preregistered at Apple: https://
appleid.apple.com/. The email can be issued by an Apple domain, such as
iCloud.com (http://icloud.com/) and apple.com, or a non-Apple domain.

bot An automated agent.

business card Business cards display the global contact details for your business, including
your brand or logo, your business phone number, email, website URL, and
Business Chat button. See Business and Place Cards.

business ID Also known as a biz-ID, it is a unique business identifier assigned when Apple
Register approves a Business Chat account.

console The view of a MSP seen by customer service agents.

conversation A long-lived interaction between a unique user Apple ID and a unique business.
A conversation may consist of multiple dialogs.

CSP ID A unique customer service platform identifier assigned when Apple Business
Register approves a CSP account. Previously referred to Customer Service
Provider, now called Messaging Service Provider.

CSP Secret A unique secret retrieved from Apple Business Register along with the CSP ID.

destination ID A field describing a messages destination. It is the user’s opaque ID for
messages sent to the client device or the Business ID for messages sent to the
MSP. This field appears twice: once in the HTTPS header of the message as
Destination-Id and once encrypted in the body as destinationId.

dialog A set of interactions between a unique customer Apple ID and a unique bot or
customer service representative that is bound in time. For example, Customer A
chats with Automated Agent #1, then CSR #15, who escalated to CSR #3, who
then refers Customer A back to CSR #15. This would be considered four
dialogs.

group ID A value used in URLs that designates the department or individuals best
qualified to handle a customer’s particular question or problem.

iMessages Apple’s secure messaging service for sending and receiving messages in the
Messages app.

intent ID A value used in URLs that define the purpose of the chat.

interactive message A category of message within Business Chat that includes List Picker, Time
Picker, Apple Pay requests, custom app download requests, and authentication
requests.

Messages app The application for sending and receiving messages. This should not be
confused with iMessages.

Business Chat API Integration Tutorial April 2020.1 47

https://appleid.apple.com/
http://iCloud.com
http://icloud.com/
http://apple.com
https://developer.apple.com/documentation/businesschat/business_and_place_cards

GLOSSARY

MSP Messaging Service Platform. A messaging platform that provides the user
interface for customer service agents and the connection to Business Chat or
the company that sells a customer service product, such as Genesys Hub and
LiveEngage by LivePerson.

opaque ID A 169-character string that uniquely identifies the interaction between a user
and a business. It is passed in the HTTP header of each Business Chat
message. An opaque ID is created with each message associated with the
conversation between the customer and a unique business.

link previews A Messages app feature that Business Chat uses. The functionality of Link
Previews has been found to be inconsistent, necessitating the creation of the
Rich Links feature in Business Chat.

OAuth An industry-standard protocol used for authorization. Business Chat supports
OAuth 2.0.

place card Place cards appear in iOS search results and display your business name and
address. See Business and Place Cards.

POI Point of Interest is a place of interest in Maps.

register The portal site located at https://register.apple.com.

rich link A MSP implemented Business Chat feature to enhance user communications.
This feature ensures that media, either an image or a video, arrives on the
customer’s device smoothly, without presenting the “Tap to Load” message. See
Sending Rich Link Messages.

source ID A field describing where the message originates. It is the user’s opaque ID for
messages from the client device or the Business ID for messages from the
MSP. This field appears twice: once in the HTTPS header of the message as
Source-Id and once encrypted in the body as sourceId.

Term Definition

Business Chat API Integration Tutorial April 2020.1 48

https://developer.apple.com/documentation/businesschatapi/messages_sent/sending_rich_link_messages
https://developer.apple.com/documentation/businesschat/business_and_place_cards
https://register.apple.com/
https://developer.apple.com/documentation/businesschatapi/messages_sent/sending_rich_link_messages

	Contents
	Overview
	Integrating with Business Chat
	Setting Up Your Accounts on Apple Business Register
	Configuring Your MSP Test Server
	Tools
	Receiving and Sending Messages
	Exercise: Listening for Incoming Messages
	Exercise: Receiving a Text Message
	Exercise: Validating a Received Message
	Exercise: Sending a Text Message
	Exercise: Sending an Image Attachment
	Exercise: Downloading Attachments
	Sending List and Time Pickers
	Exercise: Sending a Text-only List Picker
	Exercise: Sending a List Picker with an Image
	Exercise: Sending a List Picker with Multiple Images
	Exercise: Sending a List Picker Using an Interactive Data Reference (IDR)
	Exercise: Sending a Time Picker
	Advanced Interactive Messaging
	Exercise: Retrieving a Large Message Using an Interactive Data Reference
	Apple Pay in Business Chat
	Exercise: Send an Apple Pay Request—Basic Functionality
	Authentication in Business Chat
	Exercise: Sending an Authentication Request
	Exercise: Receive and Parse an Authentication Response
	Exercise: Decode the Auth Token and Retrieve User Data
	Connecting with Your Clients
	Exercise: Create a Client Landing Page
	Exercise: Publish Your Client Landing Page
	iMessage Extensions
	Exercise: Using Custom iMessage Extensions
	Frequently Asked Questions
	Most Common Error
	User Accounts and Sync of Messages Across Devices
	Routing with Intent and Group IDs
	Compliance and Regulatory Questions
	Glossary

